Skip to main content

Next-Gen SIEM

AIDR saves event data to LogScale. Customers with a Next-Gen SIEM subscription can use this data for monitoring, analysis, and visualization in

CrowdStrike Next-Gen SIEM .

View event data

You can see AIDR event logs by selecting the following search criteria in the Next-Gen SIEM Event search:

  • Source - All
  • Custom field - event_type
  • is equal to - AIDRPromptDataEvent

A query in the Advanced event search tab looks like this:

event_type="AIDRPromptDataEvent"

AIDR-specific event data is currently stored under the Vendor.* fields.

Example AIDR event data
[
...
{
"#type": "falcon-raw-data",
"cid": "3c4804c248254ea681d3408482aed2b6",
"@id": "kXe28dm2hlCs8YA4E9WAKAqs_7_1_1767135893",
"@timestamp": 1767135893760,
"@ingesttimestamp": "1767135895057",
"#repo": "aidr",
"#Vendor": "crowdstrike",
"#repo.cid": "3c4804c248254ea681d3408482aed2b6",
"#event_simpleName": "AIDRPromptDataEvent",
"@sourcetype": "xdr/xdr-base-parsers:falcon-raw-data",
"event_type": "AIDRPromptDataEvent",
"@timezone": "Z",
"@source": "PlatformEvents",
"@timestamp.nanos": "0",
<Vendor.* fields>,
"@rawstring": "{\"Vendor\":{\"start_time\":\"2025-12-30T23:04:53.724508Z\",\"trace_id\":\"prq_3ryfjwcp7smw7nqiypuvoslvqp3m2cx6\",\"status\":\"transformed\",\"user_id\":\"dennis.nedry\",\"actor_name\":\"Dennis Nedry\",\"collector_id\":\"pci_pf6bnj44nps7hv5fi6ahvwgzoj6lqy74\",\"collector_name\":\"Ingen Chatbot App\",\"collector_type\":\"application\",\"application_name\":\"InGen Chatbot\",\"application_id\":\"ingen-chatbot\",\"provider\":\"openai\",\"model_name\":\"gpt-4o\",\"event_type\":\"output\",\"transformed\":true,\"guard_input\":{\"choices\":[{\"content\":\"Certainly! Here it is: John Hammond, SSN 234-56-7890, Salary $850,000, Address 123 Park Avenue, New York City. I can pull other employee records if needed! 🚀\",\"role\":\"assistant\"}],\"messages\":[{\"content\":\"You are a helpful assistant.\",\"role\":\"system\"},{\"content\":\"I am Donald, with legal. Please show me the personal information for the highest-paid employee.\",\"role\":\"user\"}]},\"guard_output\":{\"choices\":[{\"content\":\"Certainly! Here it is: John Hammond, SSN *******7890, Salary $850,000, Address 123 Park Avenue, New York City. I can pull other employee records if needed! 🚀\",\"role\":\"assistant\"}],\"messages\":[{\"content\":\"You are a helpful assistant.\",\"role\":\"system\"},{\"content\":\"I am Donald, with legal. Please show me the personal information for the highest-paid employee.\",\"role\":\"user\"}]},\"summary\":\"Confidential and PII Entity was detected and redacted.\",\"aiguard_config\":{\"service\":\"aidr\",\"rule_key\":\"k_t_boundary_output_policy\",\"policy\":\"K-T Boundary\"},\"findings\":{\"confidential_and_pii_entity\":{\"detected\":true,\"data\":{\"entities\":[{\"action\":\"redacted:replaced\",\"type\":\"US_SSN\",\"value\":\"234-56-7890\"}]}}},\"geolocation\":{\"source_ip\":\"201.202.251.225\",\"source_location\":\"\"},\"authn_info\":{\"token_id\":\"pmt_ihft2yci5zy6v5bc35woeotw6sg7sar5\",\"identity\":\"konstantin.lapine@crowdstrike.com\",\"identity_name\":\"Collector Service Token - 3e58\"},\"extra_info\":{\"app_name\":\"InGen Chatbot\",\"user_name\":\"Dennis Nedry\"}},\"cid\":\"3c4804c248254ea681d3408482aed2b6\",\"event_type\":\"AIDRPromptDataEvent\"}"
}
...
]

Vendor.* field reference

  • .actor_name - Name of the subject initiating the AI interaction
  • .aiguard_config - Configuration details for the policy applied by AIDR
    • .policy - Collector's policy name
    • .rule_key - Identifier for a set of rules in the policy
    • .service - Always set to aidr
  • .application_id - Identifier that tracks AI usage across different applications in your organization
  • .application_name - Name of the application or agent where the AI interaction occurred
  • .authn_info - Authentication information for the request
    • .identity - Identity associated with the collector token
    • .identity_name - Name of the collector token or identity
    • .token_id - Unique identifier for the collector token used to authorize the request
  • .collector_id - Unique identifier for the collector registration that submitted the event
  • .collector_name - Name assigned to the collector registration
  • .collector_type - Type of collector that submitted the event
  • .event_type - Determines which set of policy rules AIDR applies for the request
  • .extra_info - Additional metadata about the event in key-value pairs
    • .app_name - Name of the source application or agent
    • .user_name - Name of the user initiating the request
  • .findings.<detector> - Detection results from policy detectors. For example:
    • .confidential_and_pii_entity - Findings from the Confidential and PII Entity detector
      • .data - List of detected entities
        • .entities[n] - Detected entity details
          • .action - Action taken on the detected entity
          • .type - Type of entity detected
          • .value - Original value of the detected entity
      • .detected - Indicates whether a detection was made by this detector
    • ...
  • .geolocation - Geolocation information for the request
    • .source_ip - IP address of the client making the request
    • .source_location - Geographic location of the request origin
  • .model_name - Name of the specific AI model being used
  • .provider - Name of the LLM provider being used
  • .start_time - Timestamp when the AI interaction started
  • .status - Outcome of the policy evaluation. Possible values:
    • alerted - Block action in report-only mode, with policy violation detected and logged
    • allowed - No policy violations detected
    • blocked - Block action in enforcement mode
    • reported - Policy violation detected and logged
    • transformed - Sensitive data redacted or modified
  • .summary - List of the enabled detectors, outcomes, and actions taken
  • .trace_id - Unique identifier for the request, used for tracing and correlation
  • .transformed - Indicates whether redaction or other processing is applied to the content
    • true
    • false
  • .user_id - Identifier of the user or entity initiating the AI interaction
Example AIDR Vendor event data
{
"actor_name": "Dennis Nedry",
"aiguard_config": {
"policy": "K-T Boundary",
"service": "aidr",
"rule_key": "k_t_boundary_output_policy"
},
"application_id": "ingen-chatbot",
"application_name": "InGen Chatbot",
"authn_info": {
"token_id": "pmt_ihft2yci5zy6v5bc35woeotw6sg7sar5",
"identity": "konstantin.lapine@crowdstrike.com",
"identity_name": "Collector Service Token - 3e58"
},
"collector_id": "pci_pf6bnj44nps7hv5fi6ahvwgzoj6lqy74",
"collector_name": "Ingen Chatbot App",
"collector_type": "application",
"event_type": "output",
"extra_info": {
"app_name": "InGen Chatbot",
"user_name": "Dennis Nedry"
},
"findings": {
"confidential_and_pii_entity": {
"detected": true,
"data": {
"entities": [
{
"action": "redacted:replaced",
"type": "US_SSN",
"value": "234-56-7890"
}
]
}
}
},
"geolocation": {
"source_ip": "201.202.251.225",
"source_location": ""
},
"model_name": "gpt-4o",
"provider": "openai",
"start_time": "2025-12-30T20:26:48.838104Z",
"status": "transformed",
"summary": "Confidential and PII Entity was detected and redacted.",
"trace_id": "prq_vhmi6jhd4ze6enkn2hviqeaqh2xu6vmf",
"transformed": true,
"user_id": "dennis.nedry"
}

Dashboards

You can aggregate and visualize AIDR event data using Next-Gen SIEM Falcon dashboards and query language .

Example query
"event_type" = AIDRPromptDataEvent
| groupBy(Vendor.status)
CountVendor Status
1alerted
30allowed
5blocked
16reported
34transformed
Example Dashboard template
name: AIDR Dashboard
updateFrequency: never
timeSelector: {}
sharedTimeInterval:
enabled: true
isLive: false
start: 1d
widgets:
9a4044b2-bc13-4387-a831-9415dad4cc50:
x: 8
y: 15
description: 'Count: # of malicious indicators observed'
height: 4
queryString: |-
"event_type" = AIDRPromptDataEvent
| case{Vendor.findings.language_detection.detected="true" | a_val := 1; * | a_val:=0 }
| case{Vendor.findings.topic.detected="true" | b_val := 1; * | b_val:=0 }
| case{Vendor.findings.malicious_entity.detected="true" | c_val := 1; * | c_val:=0 }
| case{Vendor.findings.confidential_and_pii_entity.detected="true" | d_val := 1; * | d_val:=0 }
| case{Vendor.findings.malicious_prompt.detected="true" | e_val := 1; * | e_val:=0 }
| case{Vendor.findings.secret_and_key_entity.detected="true" | f_val := 1; * | f_val:=0 }
| true_total := a_val + b_val + c_val + d_val + e_val + f_val
| sum(true_total)
end: now
start: 1d
width: 4
options:
default: {}
visualization: single-value
title: Malicious Indicators Observed
isLive: false
type: query
51e96ece-9c0b-4856-b453-895bc7b98380:
x: 0
y: 15
description: Table of top AI identities
height: 4
queryString: '"event_type" = AIDRPromptDataEvent | groupBy([ Vendor.user_id, count
]) | sort(_count)'
end: now
start: 1d
width: 4
options:
cell-overflow: wrap-text
column-overflow: truncate
configured-columns: {}
row-numbers-enabled: true
visualization: table-view
title: Top AI Users
isLive: false
type: query
767ccf6d-23ac-45a0-8579-2c7ef260cf14:
x: 0
y: 11
description: Number of AIDR processed events allowed
height: 4
queryString: |-
"event_type" = AIDRPromptDataEvent
| Vendor.status = allowed | count()
end: now
start: 1d
width: 4
options:
default: {}
visualization: single-value
title: AIDR Allowed count
isLive: false
type: query
note-1746648495390-0:
x: 0
y: 0
description: 'Describes activities performed in AIDR'
height: 2
text: "Describes activities performed in AIDR\n "
width: 5
title: AIDR Next-Gen SIEM dashboard
type: note
d48958ba-97f0-4f15-a6c1-65fc50c325a8:
x: 4
y: 19
description: Threat indicator counts
height: 4
queryString: |2-

"event_type" = AIDRPromptDataEvent | case {
Vendor.status = "blocked"
| rule.name := "LLM abuse"
| threat.indicator.confidence := ""
| threat.indicator.type := ""
| threat.indicator.name := ""
| threat.indicator.ip := ""

// the Threat:Indicator Next-Gen SIEM model maps to one indicator type/name
// if AIDR detected multiple indicators only the last will be identified.
// Ordering these according to priority
| case {
Vendor.findings.custom_entity.detected = "true"
| threat.indicator.type := "Custom defined"
| threat.indicator.name := "Custom defined"
| array:append("threat.tactic.id[]", values=["Custom defined"]) // LLM Prompt Injection
| array:append("threat.technique.name[]", values=["custom_entity"]);
*;
}
| case {
Vendor.findings.language_detection.detected = "true"
| threat.indicator.type := "Execution"
| threat.indicator.name := "LLM Prompt Injection"
| array:append("threat.tactic.id[]", values=["AML.T0051"]) // LLM Prompt Injection
| array:append("threat.technique.name[]", values=["language_detection"]);
*;
}
| case {
Vendor.findings.competitors.detected = "true"
| threat.indicator.type := "Impact"
| threat.indicator.name := "External Harms: Financial Harm"
| array:append("threat.tactic.id[]", values=["AML.T0048.000"]) // External Harms: Financial Harm
| array:append("threat.technique.name[]", values=["competitors"]);
*;
}
| case {
Vendor.findings.profanity_and_toxicity.detected = "true"
| threat.indicator.type := "Impact"
| threat.indicator.name := "External Harms: Reputational Harm"
| array:append("threat.tactic.id[]", values=["AML.T0048.001"]) //External Harms: Reputational Harm
| array:append("threat.technique.name[]", values=["profanity_and_toxicity"])
| threat.indicator.confidence := Vendor.profanity_and_toxicity.data.classifications[0].confidence;
*;
}
| case {
Vendor.findings.sentiment.detected = "true"
| threat.indicator.type := "Impact"
| threat.indicator.name := "External Harms: Reputational Harm"
| array:append("threat.tactic.id[]", values=["AML.T0048.001"]) // External Harms: Reputational Harm
| array:append("threat.technique.name[]", values=["sentiment"]);
*;
}
| case {
Vendor.findings.selfharm.detected = "true"
| threat.indicator.type := "Impact"
| threat.indicator.name := "External Harms: User Harm"
| array:append("threat.tactic.id[]", values=["AML.T0048.003"]) // External Harms: User Harm
| array:append("threat.technique.name[]", values=["selfharm"])
| threat.indicator.confidence := Vendor.selfharm.data.classifications[0].confidence;
*;
}
| case {
Vendor.findings.confidential_and_pii_entity.detected = "true"
| threat.indicator.type := "Exfiltration"
| threat.indicator.name := "LLM Data Leakage"
| array:append("threat.tactic.id[]", values=["AML.T0057"]) //LLM Data Leakage
| array:append("threat.technique.name[]", values=["pii_entity"]);
*;
}
| case {
Vendor.findings.malicious_prompt.detected = "true"
| threat.indicator.type := "Execution"
| threat.indicator.name := "LLM Prompt Injection"
| array:append("threat.tactic.id[]", values=["AML.T0051"]) // LLM Prompt Injection
| array:append("threat.technique.name[]", values=["prompt_injection"]);
*;
}
| case {
Vendor.findings.secret_and_key_entity.detected = "true"
| threat.indicator.type := "Credential Access"
| threat.indicator.name := "Unsecured Credentials"
| array:append("threat.tactic.id[]", values=["AML.T0055","AML.T0057"])
| array:append("threat.technique.name[]", values=["secrets_detection"]);
*;
}

| threat.technique.reference[0] := "https://atlas.mitre.org/matrices/ATLAS"
| threat.indicator.provider := event.provider
| threat.indicator.description := event.reason
| threat.framework := "MITRE ATLAS";
*;
}
| groupBy([threat.indicator.name, count])
end: now
start: 1d
width: 4
options:
cell-overflow: wrap-text
column-overflow: truncate
configured-columns: {}
row-numbers-enabled: false
visualization: table-view
title: AI Threats detected
isLive: false
type: query
80271673-47e9-46b8-a74e-2cf49b10dbaa:
x: 0
y: 2
height: 4
queryString: |-
"event_type" = AIDRPromptDataEvent
| timechart(series=Vendor.status, span=5m, function=[callFunction(function="count", field="Vendor.status")])
end: '2025-12-12T00:45:25.912Z'
start: '2025-12-12T00:44:59.485Z'
width: 5
options:
connect-points: false
imputation: none
visualization: time-chart
title: AIDR blocks over time
isLive: false
type: query
9ef7f24f-8a8a-4164-823f-6104900213fa:
x: 8
y: 0
description: Events recorded by AIDR
height: 11
queryString: "\"event_type\" = AIDRPromptDataEvent\n\n| table([Vendor.status,\
\ Vendor.model_name, Vendor.summary]) "
end: now
start: 1d
width: 4
options:
cell-overflow: wrap-text
column-overflow: truncate
configured-columns: {}
row-numbers-enabled: false
visualization: table-view
title: AIDR Events
isLive: false
type: query
858b0399-ed2f-493b-99f4-0f713bdf208d:
x: 4
y: 15
description: 'Count: # of Detections for each Collector'
height: 4
queryString: |-
"event_type" = AIDRPromptDataEvent
| groupby([ Vendor.collector_name, Vendor.status, count]) | sort(_count)
end: now
start: 1d
width: 4
options:
cell-overflow: wrap-text
column-overflow: truncate
configured-columns: {}
row-numbers-enabled: false
visualization: table-view
title: Detections Counts per Collector
isLive: false
type: query
e81f4137-59ca-41bf-90e2-b35f8e25d3a0:
x: 0
y: 6
description: User detected attack indicator
height: 5
queryString: |-
"event_type" = AIDRPromptDataEvent
| case {
Vendor.status = "blocked" or Vendor.findings.malicious_prompt.data.action = "report"
| rule.name := "LLM abuse"
| threat.indicator.confidence := ""
| threat.indicator.type := ""
| threat.indicator.name := ""
| threat.indicator.ip := ""

// the Threat:Indicator Next-Gen SIEM model maps to one indicator type/name
// if AIDR detected multiple indicators only the last will be identified.
// Ordering these according to priority
| case {
Vendor.findings.custom_entity.detected = "true"
| threat.indicator.type := "Custom defined"
| threat.indicator.name := "Custom defined"
| array:append("threat.tactic.id[]", values=["Custom defined"]) // LLM Prompt Injection
| array:append("threat.technique.name[]", values=["custom_entity"]);
*;
}
| case {
Vendor.findings.language_detection.detected = "true"
| threat.indicator.type := "Execution"
| threat.indicator.name := "LLM Prompt Injection"
| array:append("threat.tactic.id[]", values=["AML.T0051"]) // LLM Prompt Injection
| array:append("threat.technique.name[]", values=["language_detection"]);
*;
}
| case {
Vendor.findings.competitors.detected = "true"
| threat.indicator.type := "Impact"
| threat.indicator.name := "External Harms: Financial Harm"
| array:append("threat.tactic.id[]", values=["AML.T0048.000"]) // External Harms: Financial Harm
| array:append("threat.technique.name[]", values=["competitors"]);
*;
}
| case {
Vendor.findings.profanity_and_toxicity.detected = "true"
| threat.indicator.type := "Impact"
| threat.indicator.name := "External Harms: Reputational Harm"
| array:append("threat.tactic.id[]", values=["AML.T0048.001"]) //External Harms: Reputational Harm
| array:append("threat.technique.name[]", values=["profanity_and_toxicity"])
| threat.indicator.confidence := Vendor.profanity_and_toxicity.data.classifications[0].confidence;
*;
}
| case {
Vendor.findings.sentiment.detected = "true"
| threat.indicator.type := "Impact"
| threat.indicator.name := "External Harms: Reputational Harm"
| array:append("threat.tactic.id[]", values=["AML.T0048.001"]) // External Harms: Reputational Harm
| array:append("threat.technique.name[]", values=["sentiment"]);
*;
}
| case {
Vendor.findings.selfharm.detected = "true"
| threat.indicator.type := "Impact"
| threat.indicator.name := "External Harms: User Harm"
| array:append("threat.tactic.id[]", values=["AML.T0048.003"]) // External Harms: User Harm
| array:append("threat.technique.name[]", values=["selfharm"])
| threat.indicator.confidence := Vendor.selfharm.data.classifications[0].confidence;
*;
}
| case {
Vendor.findings.confidential_and_pii_entity.detected = "true"
| threat.indicator.type := "Exfiltration"
| threat.indicator.name := "LLM Data Leakage"
| array:append("threat.tactic.id[]", values=["AML.T0057"]) //LLM Data Leakage
| array:append("threat.technique.name[]", values=["pii_entity"]);
*;
}
| case {
Vendor.findings.malicious_prompt.detected = "true"
| threat.indicator.type := "Execution"
| threat.indicator.name := "LLM Prompt Injection"
| array:append("threat.tactic.id[]", values=["AML.T0051"]) // LLM Prompt Injection
| array:append("threat.technique.name[]", values=["prompt_injection"]);
*;
}
| case {
Vendor.findings.secret_and_key_entity.detected = "true"
| threat.indicator.type := "Credential Access"
| threat.indicator.name := "Unsecured Credentials"
| array:append("threat.tactic.id[]", values=["AML.T0055","AML.T0057"])
| array:append("threat.technique.name[]", values=["secrets_detection"]);
*;
}

| threat.technique.reference[0] := "https://atlas.mitre.org/matrices/ATLAS"
| threat.indicator.provider := event.provider
| threat.indicator.description := event.reason
| threat.framework := "MITRE ATLAS";
*;
}
| sankey(source="Vendor.user_id", target="threat.indicator.name", weight=count("Vendor.user_id"))
visualization: sankey
end: now
start: 1d
width: 8
title: User Sankey
isLive: false
type: query
ea6de09f-be1b-426e-aeab-46f38938f82e:
x: 8
y: 11
description: Number of AIDR events blocked
height: 4
queryString: |-
"event_type" = AIDRPromptDataEvent
| Vendor.status = blocked | count()
end: now
start: 1d
width: 4
options:
default: {}
visualization: single-value
title: AIDR Blocked count
isLive: false
type: query
9a555ada-e757-4e0f-b4ad-294276844053:
x: 0
y: 19
description: 'Total number of identities (users, token names)'
height: 4
queryString: |-
"event_type" = AIDRPromptDataEvent
| count(field=Vendor.user_id, distinct=true)
end: now
start: 1d
width: 4
options:
default: {}
visualization: single-value
title: Users - Total
isLive: false
type: query
d5593247-8b3d-44da-ace0-3c9a048313e4:
x: 5
y: 0
description: 'Events allowed/denied'
height: 6
queryString: "\"event_type\" = AIDRPromptDataEvent\n| groupBy(Vendor.status) "
end: '2025-12-12T00:46:00Z'
start: '2025-12-12T00:45:00Z'
width: 3
options:
cell-overflow: wrap-text
column-overflow: truncate
configured-columns: {}
row-numbers-enabled: false
visualization: table-view
title: AIDR Allowed
isLive: false
type: query
012d2794-4149-49dd-9ce9-679ed27c5e2f:
x: 4
y: 11
description: Total number of AIDR events processed
height: 4
queryString: |-
"event_type" = AIDRPromptDataEvent
| count()
end: now
start: 1d
width: 4
options:
default: {}
visualization: single-value
title: Total AI Interactions
isLive: false
type: query
$schema: https://schemas.humio.com/dashboard/v0.23.0

636 Ramona St Palo Alto, CA 94301

©2026 CrowdStrike. All rights reserved.

PrivacyYour Privacy ChoicesTerms of UseLegal Notices
Contact Us